bimmer_connected Documentation

m1n3rva

Apr 30, 2024

README

1 Installation 3
2 Usage 5
2.1 Exampleinan asyncioeventloopo e e e e e e 5
2.2 Exampleinnon-asynccode e e e e 5
3 Compatibility 7
4 Data Contributions 9
5 Code Contributions 11
6 Thank you 13
7 License 15
8 Disclaimer 17
8.1 bimmer connected L L L e e e e e 17
8.2 Installation e e e e e 17
83 USage e e 18
84 Compatibility e e e e e e e e e e e e 19
8.5 DataContributions e e e e e e e e e e 19
8.6 Code Contributions o e e e e e e e e e 20
87 Thankyou 20
8.8 LICENSE i e e e e e 20
8.9 Disclaimer e e e e e e e e e 20
8.10 Using fingerprints in Home Assistant L 20
8.11 Reverse engineering the MyBMW API L 21
8.12 bimmerconnected. e e 24
8.13 bimmer_connected.acCount v i i i i e e e 30
8.14 bimmer_connected.api e e 32
8.15 bimmer_connected.CONnSt o i i i e e e e e e e e e 34
8.16 bimmer_connected.models e e e 35
8.17 bimmer_connected.utils e 38
8.18 bimmer_connected.vehicle 38
9 Indices and tables 51
Python Module Index 53
Index 55

bimmer_connected Documentation

This is a simple library to query and control the status of your BMW or Mini vehicle from the MyBMW portal.

README 1

https://pypi.org/project/bimmer-connected
https://github.com/bimmerconnected/bimmer_connected/actions/workflows/test.yml?query=branch%3Amaster
https://bimmer-connected.readthedocs.io/en/stable/?badge=latest
https://codecov.io/gh/bimmerconnected/bimmer_connected
https://pepy.tech/badge/bimmer-connected/week
https://pepy.tech/project/bimmer-connected/month
https://pepy.tech/project/bimmer-connected

bimmer_connected Documentation

2 README

CHAPTER
ONE

INSTALLATION

bimmer_connected is tested against Python 3.8 or above. Just install the latest release from PyPI using pip3
install --upgrade bimmer_connected.

Alternatively, clone the project and execute pip install -e . toinstall the current master branch.

Note: If you want to connect to a chinese server, you need to install the [china] extra, e.g. pip3 install
--upgrade bimmer_connected[china].

https://pypi.org/project/bimmer-connected/

bimmer_connected Documentation

4 Chapter 1. Installation

CHAPTER
TWO

While this library is mainly written to be included in Home Assistant, it can be use on its own.

USAGE

After installation, execute bimmerconnected from command line for usage instruction or see the full CLI documen-

tation.

Please be aware that bimmer_connected is an async library when using it in Python code. The description of the

modules can be found in the module documentation.

2.1 Example in an asyncio event loop

import asyncio
from bimmer_connected.account import MyBMWAccount
from bimmer_connected.api.regions import Regions

async def main():
account = MyBMWAccount (USERNAME, PASSWORD, Regions.REST_OF_WORLD)
await account.get_vehicles()
vehicle = account.get_vehicle(VIN)
print(vehicle.brand, vehicle.name, vehicle.vin)

result = await vehicle.remote_services.trigger_remote_light_flash()
print(result.state)

asyncio.run(main())

2.2 Example in non-async code

import asyncio
from bimmer_connected.account import MyBMWAccount
from bimmer_connected.api.regions import Regions

account = MyBMWAccount (USERNAME, PASSWORD, Regions.REST_OF_WORLD)
asyncio.run(account.get_vehicles())

vehicle = account.get_vehicle(VIN)

print(vehicle.brand, vehicle.name, vehicle.vin)

(continues on next page)

https://www.home-assistant.io/integrations/bmw_connected_drive/
http://bimmer-connected.readthedocs.io/en/stable/#cli
http://bimmer-connected.readthedocs.io/en/stable/#cli
http://bimmer-connected.readthedocs.io/en/stable/#module

bimmer_connected Documentation

(continued from previous page)

result = asyncio.run(vehicle.remote_services.trigger_remote_light_flash())
print(result.state)

6 Chapter 2. Usage

CHAPTER
THREE

COMPATIBILITY

This works with BMW (and Mini) vehicles with a MyBMW account. So far it is tested on vehicles with a ‘MGU’,
‘NBTEvo’, ‘EntryEvo’, ‘NBT’, or ‘EntryNav’ navigation system. If you have any trouble with other navigation systems,
please create an issue with your server responses (see next section).

To use this library, your BMW (or Mini) must have the remote services enabled for your vehicle. You might need to
book this in the MyBMW/Mini Connected portal and this might cost some money. In addition to that you need to
enable the Remote Services in your infotainment system in the vehicle.

Different models of vehicles and infotainment systems result in different types of attributes provided by the server. So
the experience with the library will certainly vary across the different vehicle models.

bimmer_connected Documentation

8 Chapter 3. Compatibility

CHAPTER
FOUR

DATA CONTRIBUTIONS

If some features do not work for your vehicle, we would need the data returned form the server to analyse this and
potentially extend the code. Different models and head unit generations lead to different responses from the server.

If you want to contribute your data, perform the following steps:

get the latest version of the library
pip3 install --upgrade bimmer_connected

run the fingerprint function
bimmerconnected fingerprint <username> <password> <region>

This will create a set of log files in the “vehicle_fingerprint” folder. Before sending the data to anyone please check
for any personal data such as dealer name or country.

The following attributes are by default replaced with anonymized values:
e vin (Vehicle Identification Number)
* lat and lon (GPS position)
e licensePlate
e information of dealer
Create a new fingerprint data contribution and add the files as attachment to the discussion.

Please add your model and year to the title of the issue, to make it easier to organize. If you know the “chassis code”
of your car, you can include that too. (For example, googling “2017 BMW X5 will show a Wikipedia article entitled
“BMW X5 (F15)”. F15 is therefore the chassis code of the car.)

Note: We will then use this data as additional test cases. So we will publish (parts of) it (after checking for personal
information again) and use this as test cases for our library. If you do not want this, please let us know in advance.

https://github.com/bimmerconnected/bimmer_connected/discussions/new?category_id=32000818

bimmer_connected Documentation

10 Chapter 4. Data Contributions

CHAPTER
FIVE

CODE CONTRIBUTIONS

Contributions are welcome! Please make sure that your code passes the checks in . github/workflows/test.yml.
We currently test against f1ake8, pylint and our own pytest suite. And please add tests where it makes sense. The
more the better.

See the contributing guidelines for more details.

11

https://github.com/bimmerconnected/bimmer_connected/blob/master/CONTRIBUTING.md

bimmer_connected Documentation

12 Chapter 5. Code Contributions

CHAPTER
SIX

THANK YOU

Thank you to all contributors for your research and contributions! And thanks to everyone who shares the fingerprint
data of their vehicles which we use to test the code. A special thanks to @ HuChundong, @muxiachuixue, @vividmuse
for figuring out how to solve login issues!

This library is basically a best-of of other similar solutions, yet none of them provided a ready to use library with a
matching interface to be used in Home Assistant and is available on pypi.

https://github.com/edent/ BMW-i-Remote
https://github.com/jupe76/bmwcdapi
https://github.com/frankjoke/iobroker.bmw
https://github.com/TA2k/ioBroker.bmw

https://gitee.com/ichuixue/bmw_shortcuts / https://www.icloud.com/shortcuts/
eb064e89e6b647d2828a404227b91c4a

Thank you for your great software!

13

https://github.com/bimmerconnected/bimmer_connected/graphs/contributors
https://github.com/bimmerconnected/bimmer_connected#data-contributions
https://github.com/bimmerconnected/bimmer_connected#data-contributions
https://github.com/edent/BMW-i-Remote
https://github.com/jupe76/bmwcdapi
https://github.com/frankjoke/iobroker.bmw
https://github.com/TA2k/ioBroker.bmw
https://gitee.com/ichuixue/bmw_shortcuts
https://www.icloud.com/shortcuts/eb064e89e6b647d2828a404227b91c4a
https://www.icloud.com/shortcuts/eb064e89e6b647d2828a404227b91c4a

bimmer_connected Documentation

14 Chapter 6. Thank you

CHAPTER
SEVEN

LICENSE

The bimmer_connected library is licensed under the Apache License 2.0.

15

bimmer_connected Documentation

16 Chapter 7. License

CHAPTER
EIGHT

DISCLAIMER

This library is not affiliated with or endorsed by BMW Group.

8.1 bimmer_connected

This is a simple library to query and control the status of your BMW or Mini vehicle from the MyBMW portal.

8.2 Installation

bimmer_connected is tested against Python 3.8 or above. Just install the latest release from PyPI using pip3
install --upgrade bimmer_connected.

Alternatively, clone the project and execute pip install -e . to install the current master branch.

Note: If you want to connect to a chinese server, you need to install the [china] extra, e.g. pip3 install
--upgrade bimmer_connected[china].

17

https://pypi.org/project/bimmer-connected
https://github.com/bimmerconnected/bimmer_connected/actions/workflows/test.yml?query=branch%3Amaster
https://bimmer-connected.readthedocs.io/en/stable/?badge=latest
https://codecov.io/gh/bimmerconnected/bimmer_connected
https://pepy.tech/badge/bimmer-connected/week
https://pepy.tech/project/bimmer-connected/month
https://pepy.tech/project/bimmer-connected
https://pypi.org/project/bimmer-connected/

bimmer_connected Documentation

8.3 Usage

While this library is mainly written to be included in Home Assistant, it can be use on its own.

After installation, execute bimmerconnected from command line for usage instruction or see the full CLI documen-
tation.

Please be aware that bimmer_connected is an async library when using it in Python code. The description of the
modules can be found in the module documentation.

8.3.1 Example in an asyncio event loop

import asyncio
from bimmer_connected.account import MyBMWAccount
from bimmer_connected.api.regions import Regions

async def main(Q):
account = MyBMWAccount (USERNAME, PASSWORD, Regions.REST_OF_WORLD)
await account.get_vehicles()
vehicle = account.get_vehicle(VIN)
print(vehicle.brand, vehicle.name, vehicle.vin)

result = await vehicle.remote_services.trigger_remote_light_flash()
print(result.state)

asyncio.run(main())

8.3.2 Example in non-async code

import asyncio
from bimmer_connected.account import MyBMWAccount
from bimmer_connected.api.regions import Regions

account = MyBMWAccount (USERNAME, PASSWORD, Regions.REST_OF_WORLD)
asyncio.run(account.get_vehicles())

vehicle = account.get_vehicle(VIN)

print(vehicle.brand, vehicle.name, vehicle.vin)

result = asyncio.run(vehicle.remote_services.trigger_remote_light_flash())
print(result.state)

18 Chapter 8. Disclaimer

https://www.home-assistant.io/integrations/bmw_connected_drive/
http://bimmer-connected.readthedocs.io/en/stable/#cli
http://bimmer-connected.readthedocs.io/en/stable/#cli
http://bimmer-connected.readthedocs.io/en/stable/#module

bimmer_connected Documentation

8.4 Compatibility

This works with BMW (and Mini) vehicles with a MyBMW account. So far it is tested on vehicles with a ‘MGU’,
‘NBTEvo’, ‘EntryEvo’, ‘NBT’, or ‘EntryNav’ navigation system. If you have any trouble with other navigation systems,
please create an issue with your server responses (see next section).

To use this library, your BMW (or Mini) must have the remote services enabled for your vehicle. You might need to
book this in the MyBMW/Mini Connected portal and this might cost some money. In addition to that you need to
enable the Remote Services in your infotainment system in the vehicle.

Different models of vehicles and infotainment systems result in different types of attributes provided by the server. So
the experience with the library will certainly vary across the different vehicle models.

8.5 Data Contributions

If some features do not work for your vehicle, we would need the data returned form the server to analyse this and
potentially extend the code. Different models and head unit generations lead to different responses from the server.

If you want to contribute your data, perform the following steps:

get the latest version of the library
pip3 install --upgrade bimmer_connected

run the fingerprint function
bimmerconnected fingerprint <username> <password> <region>

This will create a set of log files in the “vehicle_fingerprint” folder. Before sending the data to anyone please check
for any personal data such as dealer name or country.

The following attributes are by default replaced with anonymized values:
* vin (Vehicle Identification Number)
e lat and lon (GPS position)
e licensePlate
* information of dealer
Create a new fingerprint data contribution and add the files as attachment to the discussion.

Please add your model and year to the title of the issue, to make it easier to organize. If you know the ‘““chassis code”
of your car, you can include that too. (For example, googling “2017 BMW X5” will show a Wikipedia article entitled
“BMW X5 (F15)”. F15 is therefore the chassis code of the car.)

Note: We will then use this data as additional test cases. So we will publish (parts of) it (after checking for personal
information again) and use this as test cases for our library. If you do not want this, please let us know in advance.

8.4. Compatibility 19

https://github.com/bimmerconnected/bimmer_connected/discussions/new?category_id=32000818

bimmer_connected Documentation

8.6 Code Contributions

Contributions are welcome! Please make sure that your code passes the checks in .github/workflows/test.yml.
We currently test against f1ake8, pylint and our own pytest suite. And please add tests where it makes sense. The
more the better.

See the contributing guidelines for more details.

8.7 Thank you

Thank you to all contributors for your research and contributions! And thanks to everyone who shares the fingerprint
data of their vehicles which we use to test the code. A special thanks to @ HuChundong, @ muxiachuixue, @vividmuse
for figuring out how to solve login issues!

This library is basically a best-of of other similar solutions, yet none of them provided a ready to use library with a
matching interface to be used in Home Assistant and is available on pypi.

* https://github.com/edent/BMW-i-Remote
* https://github.com/jupe76/bmwcdapi

* https://github.com/frankjoke/iobroker.bmw
* https://github.com/TA2k/ioBroker.bmw

* https://gitee.com/ichuixue/bmw_shortcuts / https://www.icloud.com/shortcuts/
eb064e89e6b647d2828a404227b91c4a

Thank you for your great software!

8.8 License

The bimmer_connected library is licensed under the Apache License 2.0.

8.9 Disclaimer

This library is not affiliated with or endorsed by BMW Group.

8.10 Using fingerprints in Home Assistant

Sometimes it can be useful to load the fingerprints used for our pytest suite in the development of the Home Assistant
component. This enables debugging of the UI in Home Assistant which is not possible from pytest alone.

Warning: This is for the Home Assistant development environment only! Do not do this on your live instance!

Setup and start Home Assistant in the development environment at least once and let all python packages install (hass
-c ./config). If not already done, set up the BMW Connected Drive Integration. You need to login a MyBMW
account at least once. Shut down Homeassistant afterwards.

20 Chapter 8. Disclaimer

https://github.com/bimmerconnected/bimmer_connected/blob/master/CONTRIBUTING.md
https://github.com/bimmerconnected/bimmer_connected/graphs/contributors
https://github.com/bimmerconnected/bimmer_connected#data-contributions
https://github.com/bimmerconnected/bimmer_connected#data-contributions
https://github.com/edent/BMW-i-Remote
https://github.com/jupe76/bmwcdapi
https://github.com/frankjoke/iobroker.bmw
https://github.com/TA2k/ioBroker.bmw
https://gitee.com/ichuixue/bmw_shortcuts
https://www.icloud.com/shortcuts/eb064e89e6b647d2828a404227b91c4a
https://www.icloud.com/shortcuts/eb064e89e6b647d2828a404227b91c4a
https://developers.home-assistant.io/docs/development_environment
https://developers.home-assistant.io/docs/development_environment

bimmer_connected Documentation

Note: The MyBMW account does not need to contain vehicles, a demo account without attached vehicles is sufficient.

Now, we have to “hack’ our mocked backend calls into Home Assistant.

Edit homeassistant/components/bmw_connected_drive/coordinator.py and locate the function def
_async_update_data(). We now have to replace await self.account.get_vehicles(). Thetry .. except
block should look like this:

try:
from bimmer_connected.tests.conftest import MyBMWMockRouter, ALL_STATES, ALL_
—»CHARGING_SETTINGS
with MyBMWMockRouter (["WBYOOOOOOOOREXIO1"], ALL_STATES, ALL_CHARGING_
—SETTINGS) :
await self.account.get_vehicles()
except:

As the first parameter, you can specify a list of VINs for debugging or leave it empty (None or []) to load all vehicles
of our test suite.

8.11 Reverse engineering the MyBMW API

This document should be seen as a help in setting up a working environment to intercept traffic of the MyBMW app.
Not every step will be described fully, this guide is rather a summary and list for further reading. It will most likely
need adjustments to your specific setup.

The MyBMW app is built with the Flutter framework and needs some additional persuasion to reveal the traffic.

8.11.1 Disclaimer
Note that we are actively disabling important security measures such as SSL/TLS encryption to understand which
commands and messages are shared between the MyBMW app and the MyBMW servers.

Also note that there could always be changes to the API or the app itself made by BMW to stop us from understanding
what is going on.

8.11.2 Acknowledgement

Most of this document would not exist without the amazing work of Jeroen Becker:
¢ Intercepting traffic from Android Flutter applications (ARMv7)
* Intercepting Flutter traffic on Android (ARMvVS)

* Intercepting Flutter traffic on iOS

8.11. Reverse engineering the MyBMW API 21

https://blog.nviso.eu/2019/08/13/intercepting-traffic-from-android-flutter-applications/
https://blog.nviso.eu/2020/05/20/intercepting-flutter-traffic-on-android-x64/
https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/

bimmer_connected Documentation

8.11.3 Software & hardware requirements

Note: This document is based on the MyBMW Android app. It should work similarly using iPhones. If possible,
please create a PR with more details.

You will need:
* A proxy with MITM capabilities such as mitmproxy

* A rooted android phone with a version supported by MyBMW (currently Android 6.0 Marshmallow). It could
also work using an Android emulator.

* Access to your phone using ADB (via USB)

¢ ProxyDroid to forward all traffic to your proxy

* Ghidra to find the location to patch out SSL verification
* A python environment with frida

* frida-android-helper to help installing frida on your phone

8.11.4 Finding the location of SSL verification
The following steps are required if the location of the SSL verification function is not known. If it is, please continue
with the next section. For more details, please refer to Jeroen Becker’s work.
Get an APK/XAPK of the MyBMW app (from your phone or one of the many download sites). APK names include:
e de.bmw.connected.mobile20.cn (china)
e de.bmw.connected.mobile20.na (north america)
¢ de.bmw.connected.mobile20.row (rest of world)

Now extract config.arm64-v8a.apk or config.armeabi-v7a.apk from the APK package (depending of your
phone’s target architecture).

In Ghidra, load and analyze 1ib/ARCH/1libflutter. so.

After analyze has finished, go to Search > For Scalar and search for value 390. Find mov r3, #0x186 and jump
to it.

Double click on function name on right side to get the hex address and first bytes of the function

[Example: 2d e9 f0 4f a3 b® 81 46 50 20 10 70

8.11.5 Preparations on phone

On your phone, add your custom CA certificates to the system store (instructions for emulator, but works on rooted
devies in similar fashion). This is required as the login screen is using the default Android WebView component, which
again behaves differently from Flutter (or rather, behaves like expected).

Add your local proxy server to your Android system using ProxyDroid.

22 Chapter 8. Disclaimer

https://mitmproxy.org/
https://developer.android.com/studio/run/emulator
https://play.google.com/store/apps/details?id=org.proxydroid
https://ghidra-sre.org/
https://frida.re/
https://github.com/Hamz-a/frida-android-helper
https://docs.mitmproxy.org/stable/howto-install-system-trusted-ca-android/

bimmer_connected Documentation

8.11.6 Disabling SSL verification with frida

Install & upgrade frida-tools & frida-android-helper (see requirements). Make sure that both are on the latest
version.

Create a frida hook named hook_flutter_disable_ssl. js with the following content. If needed, replace the
search pattern and disable adding 0x01 on ARMvS.

function hook_ssl_verify_result(address)
{
Interceptor.attach(address, {
onEnter: function(args) {
console.log("Disabling SSL validation")
Fo
onLeave: function(retval)
{
console.log("Retval:
retval.replace(0x1);

+ retval)

}

5D 3

}

function disablePinning()

{
var m = Process.findModuleByName("'libflutter.so");

var pattern = "2d e9 f0 4f a3 b® 81 46 50 20 10 70" // MyBMW 1.5.1 to 1.7.0 (all regions)

var res = Memory.scan(m.base, m.size, pattern, {
onMatch: function(address, size){
console.log('[+] ssl_verify_result found at:

+ address.toString());

// Add 0x01 because it's a THUMB function

// Otherwise, we would get 'Error: unable to intercept function at 0x9906f8ac;..
—please file a bug'

// REQUIRED ON ARMv7 ONLY!!

hook_ssl_verify_result(address.add(0x01));

Fo
onError: function(reason){
console.log('[!] There was an error scanning memory');

Ty
onComplete: function()
{
console.log("All done™)
}
s

}
setTimeout (disablePinning, 1000)

Connect to your phone via ADB with root permissions.

[adb root && adb remount

Update & start frida server on the phone with frida-android-helper.

8.11. Reverse engineering the MyBMW API 23

bimmer_connected Documentation

[fah server update &% fah server start

Start the MyBMW app from your computer via frida (adjust app identifier if needed).

{frida -Uf de.bmw.connected.mobile20.row -1 .\hook_flutter_disable_ssl.js --no-pause

Now you should be able to capture all traffic between your phone and the MyBMW API.

8.11.7 Using the information in bimmer_connected
If you learn anything by capturing the traffic, please create Issues/Feature Requests or Pull Requests to our repository.
Information that should be included contains:

* The URL of the endpoint

* HTTP headers of your request (DO NOT include Cookie or Authentication headers)

* The request payload (if available)

* The request response (if available)

If the data contains personal information, please do not delete it but replace it with random data.

Warning: Double check if all information is sanitized and no personal information or authentication data is
included.

8.12 bimmerconnected

A simple executable to use and test the library.

usage: bimmerconnected [-h] [--debug]
{status, fingerprint,lightflash,horn,vehiclefinder,
—»chargingsettings, chargingprofile,charge,image, sendpoi, sendpoi_from_address}

8.12.1 Positional Arguments

cmd Possible choices: status, fingerprint, lightflash, horn, vehiclefinder, chargingset-
tings, chargingprofile, charge, image, sendpoi, sendpoi_from_address

24 Chapter 8. Disclaimer

https://github.com/bimmerconnected/bimmer_connected/issues/new/choose
https://github.com/bimmerconnected/bimmer_connected/pulls

bimmer_connected Documentation

8.12.2 Named Arguments

--debug Print debug logs.
Default: False

8.12.3 Sub-commands

status

Get the current status of the vehicle.

bimmerconnected status [-h] [-j] [-v [VIN]]
username password {north_america,china,rest_of world}

[lat] [1ng]

Positional Arguments

username Connected Drive username
password Connected Drive password
region Possible choices: north_america, china, rest_of_world

Region of the Connected Drive account
lat (optional) Your current GPS latitude (as float)

Ing (optional) Your current GPS longitude (as float)

Named Arguments

-j, --json Output as JSON only. Removes all other output.
Default: False
-v, --vin Output data for specified VIN only.
fingerprint

Save a vehicle fingerprint.

bimmerconnected fingerprint [-h]
username password
{north_america,china,rest_of world} [lat] [lng]

8.12. bimmerconnected 25

bimmer_connected Documentation

Positional Arguments

username
password

region

lat

Ing

lightflash

Flash the vehicle lights.

Connected Drive username

Connected Drive password

Possible choices: north_america, china, rest_of_world
Region of the Connected Drive account

(optional) Your current GPS latitude (as float)

(optional) Your current GPS longitude (as float)

bimmerconnected lightflash [-h]

username password
{north_america,china,rest_of_world} vin

Positional Arguments

username
password
region

vin

horn

Trigger the vehicle horn

Connected Drive username

Connected Drive password

Possible choices: north_america, china, rest_of_world
Region of the Connected Drive account

Vehicle Identification Number

bimmerconnected horn [-h]

username password {north_america,china,rest_of_world} vin

Positional Arguments

username
password

region

vin

Connected Drive username

Connected Drive password

Possible choices: north_america, china, rest_of world
Region of the Connected Drive account

Vehicle Identification Number

26

Chapter 8.

Disclaimer

bimmer_connected Documentation

vehiclefinder

Update the vehicle GPS location.

bimmerconnected vehiclefinder [-h]
username password
{north_america,china,rest_of_world} vin [lat]

[1ng]
Positional Arguments
username Connected Drive username
password Connected Drive password
region Possible choices: north_america, china, rest_of world

Region of the Connected Drive account

vin Vehicle Identification Number
lat (optional) Your current GPS latitude (as float)
Ing (optional) Your current GPS longitude (as float)

chargingsettings

Set vehicle charging settings.

bimmerconnected chargingsettings [-h] [--target-soc [TARGET_SOC]]
[--ac-1imit [AC_LIMIT]]
username password
{north_america,china,rest_of_world} vin

Positional Arguments

username Connected Drive username
password Connected Drive password
region Possible choices: north_america, china, rest_of world

Region of the Connected Drive account

vin Vehicle Identification Number

8.12. bimmerconnected 27

bimmer_connected Documentation

Named Arguments

--target-soc Desired charging target SoC

--ac-limit Maximum AC limit

chargingprofile

Set vehicle charging profile.

bimmerconnected chargingprofile [-h]
[--charging-mode [{IMMEDIATE_CHARGING,DELAYED_CHARGING}]]
[--precondition-climate [PRECONDITION_CLIMATE]]
username password
{north_america,china,rest_of_world} vin

Positional Arguments

username Connected Drive username
password Connected Drive password
region Possible choices: north_america, china, rest_of_world

Region of the Connected Drive account

vin Vehicle Identification Number

Named Arguments

--charging-mode Possible choices: IMMEDIATE_CHARGING, DELAYED_CHARGING
Desired charging mode
--precondition-climate Precondition climate on charging windows
charge

Start/stop charging on enabled vehicles.

bimmerconnected charge [-h]
username password {north_america,china,rest_of_world}
vin {start,stop}

28 Chapter 8. Disclaimer

bimmer_connected Documentation

Positional Arguments

username
password

region

vin

action

image

Download a vehicle image.

Connected Drive username

Connected Drive password

Possible choices: north_america, china, rest_of_world
Region of the Connected Drive account

Vehicle Identification Number

Possible choices: start, stop

bimmerconnected image

[-h]
username password {north_america,china,rest_of world}
vin

Positional Arguments

username
password

region

vin

sendpoi

Connected Drive username

Connected Drive password

Possible choices: north_america, china, rest_of_world
Region of the Connected Drive account

Vehicle Identification Number

Send a point of interest to the vehicle.

bimmerconnected sendpoi [-h] [--name [NAME]] [--street [STREET]]

[--city [CITY]] [--postalcode [POSTALCODE]]
[--country [COUNTRY]]

username password {north_america,china,rest_of_world}
vin latitude longitude

Positional Arguments

username
password

region

vin

latitude

Connected Drive username

Connected Drive password

Possible choices: north_america, china, rest_of_world
Region of the Connected Drive account

Vehicle Identification Number

Latitude of the POI

8.12. bimmerconnected

29

bimmer_connected Documentation

longitude Longitude of the POI

Named Arguments

--name Name of the POI

Default: “Sent with by bimmer_connected”

--street (optional, display only) Street & House No. of the POI
--city (optional, display only) City of the POI

--postalcode (optional, display only) Postal code of the POI
--country (optional, display only) Country of the POI

sendpoi_from_address

Send a point of interest parsed from a street address to the vehicle.

bimmerconnected sendpoi_from_address [-h] [-n [NAME]]
[-a ADDRESS [ADDRESS ...1]
username password
{north_america,china,rest_of_world} vin

Positional Arguments

username Connected Drive username
password Connected Drive password
region Possible choices: north_america, china, rest_of_world

Region of the Connected Drive account

vin Vehicle Identification Number

Named Arguments

-n, --name (optional, display only) Name of the POI

-a, --address Address (e.g. ‘Street 17, city, zip, country’)

8.13 bimmer_connected.account

Access to a MyBMW account and all vehicles therein.

class bimmer_connected.account.MyBMWAccount (username: str, password: dataclasses.InitVar[str], region:
Regions, config: MyBMWClientConfiguration = None,
log_responses: dataclasses.InitVar[bool] = False,
observer_position: dataclasses.InitVar{ GPSPosition] =
None, use_metric_units:
dataclasses.InitVar[Optional[bool]] = None)

Create a new connection to the MyBMW web service.

30 Chapter 8. Disclaimer

bimmer_connected Documentation

async add_vehicle(vehicle_base: dict, fetched_at: datetime | None = None) — None
Add or update a vehicle from the API responses.

config: MyBMWClientConfiguration = None
Optional. If provided, username/password/region are ignored.
property gcid: str | None
Returns the current GCID.
static get_stored_responses() — List[AnonymizedResponse]
Return responses stored if log_responses was set to True.
get_vehicle (vin: str) — MyBMWVehicle | None
Get vehicle with given VIN.

The search is NOT case sensitive. :param vin: VIN of the vehicle you want to get. :return: Returns None
if no vehicle is found.

async get_vehicles(force_init: bool = False) — None
Retrieve vehicle data from BMW servers.
log_responses: dataclasses.InitVar[bool] = False
Optional. If set, all responses from the server will be logged to this directory.
observer_position: dataclasses.InitVar[GPSPosition] = None
Optional. Required for getting a position on older cars.
password: dataclasses.InitVar[str]
MyBMW password.
property refresh_token: str | None
Returns the current refresh_token.
region: Regions
Region of the account. See api.Regions.
set_observer_position(latitude: float, longitude: float) — None
Set the position of the observer for all vehicles.
set_refresh_token(refresh_token: str, gcid: str | None = None) — None
Overwrite the current value of the MyBMW refresh token and GCID (if available).
use_metric_units: dataclasses.InitVar[Optional[bool]] = None
Deprecated. All returned values are metric units (km, 1).
username: str

MyBMW user name (email) or 86-prefixed phone number (China only).
vehicles: List[MyBMiWVehicle]

8.13. bimmer_connected.account 31

bimmer_connected Documentation

8.14 bimmer_connected.api

The bimmer_connected.api module contains helper functions to communicate with the BMW APIs.

8.14.1 bimmer_connected.api.authentication

Authentication management for BMW APIs.

class bimmer_connected.api.authentication.MyBMWAuthentication(username: str, password: str,
region: Regions, access_token: str
| None = None, expires_at:
datetime | None = None,
refresh_token: str | None = None,
gcid: str | None = None)

Authentication and Retry Handler for MyBMW APL
async async_auth_flow(request: Request) — AsyncGenerator[Request, Response]
Execute the authentication flow asynchronously.

By default, this defers to .auth_flow(). You should override this method when the authentication scheme
does I/0 and/or uses concurrency primitives.

async login() — None
Get a valid OAuth token.
property login_lock: Lock
Make sure that there is a lock in the current event loop.
sync_auth_flow(request: Request) — Generator[Request, Response, None]
Execute the authentication flow synchronously.

By default, this defers to .auth_flow(). You should override this method when the authentication scheme
does I/O and/or uses concurrency primitives.

class bimmer_connected.api.authentication.MyBMWLoginClient (*args, **kwargs)
Async HTTP client based on httpx.AsyncClient with automated OAuth token refresh.
class bimmer_connected.api.authentication.MyBMWLoginRetry
httpx.Auth used as workaround to retry & sleep on 429 Too Many Requests.
async async_auth_flow(request: Request) — AsyncGenerator[Request, Response]
Execute the authentication flow asynchronously.

By default, this defers to .auth_flow(). You should override this method when the authentication scheme
does I/0 and/or uses concurrency primitives.

sync_auth_flow(request: Request) — Generator[Request, Response, None]
Execute the authentication flow synchronously.

By default, this defers to .auth_flow(). You should override this method when the authentication scheme
does I/0 and/or uses concurrency primitives.

bimmer_connected.api.authentication.get_retry_wait_time (response: Response) — int

Get the wait time for the next retry from the response and multiply by 2.

32 Chapter 8. Disclaimer

bimmer_connected Documentation

8.14.2 bimmer_connected.api.client

Generic API management.

class bimmer_connected.api.client.MyBMWClient (config: MyBMWClientConfiguration, *args, brand:
CarBrands | None = None, **kwargs)

Async HTTP client based on httpx.AsyncClient with automated OAuth token refresh.

generate_default_header (brand: CarBrands | None = None) — Dict[str, str]

Generate a header for HTTP requests to the server.

class bimmer_connected.api.client.MyBMWClientConfiguration (authentication:
MyBMWAuthentication,
log_responses: bool | None = False,
observer_position: GPSPosition | None
= None)

Stores global settings for MyBMWClient.

authentication: MyBMWAuthentication
log_responses: bool | None = False
observer_position: GPSPosition | None = None

set_log_responses (log_responses: bool) — None

Set if responses are logged and clear response store.

8.14.3 bimmer_connected.api.regions

Get the right url for the different countries.

bimmer_connected.api.regions.get_app_version(region: Regions) — str
Get the app version & build number for the region.

bimmer_connected.api.regions.get_ocp_apim_key (region: Regions) — str
Get the authorization for OAuth settings.

bimmer_connected.api.regions.get_region_from_name (name: str) — Regions

Get a region for a string.

This function is not case-sensitive.
bimmer_connected.api.regions.get_server_url (region: Regions) — str

Get the url of the server for the region.
bimmer_connected.api.regions.get_user_agent (region: Regions) — str

Get the Dart user agent for the region.

bimmer_connected.api.regions.valid_regions() — List[str]

Get list of valid regions as strings.

8.14. bimmer_connected.api 33

bimmer_connected Documentation

8.14.4 bimmer_connected.api.utils

Utils for bimmer_connected.api.
bimmer_connected.api.utils.anonymize_data(json_data: List | Dict) — List| Dict

Replace parts of the logfiles containing personal information.
bimmer_connected.api.utils.anonymize_response (response: Response) — AnonymizedResponse

Anonymize a responses URL and content.
bimmer_connected.api.utils.anonymize_vin(match: Match)

Anonymize VINs but keep assignment.
bimmer_connected.api.utils.create_s256_code_challenge(code_verifier: str) — str

Create S256 code_challenge with the given code_verifier.
bimmer_connected.api.utils.generate_cn_nonce (username: str) — str

Generate a x-login-nonce string.
bimmer_connected.api.utils.generate_random_base64_string(size: int) — str

Generate a random base64 string with size.

bimmer_connected.api.utils.generate_token(length: int = 30, chars: str =
‘abcdefghijklmnopqrstuvwxyzZABCDEFGHIJKLMNOPQRSTUVWXYZ01234567
._~") = str

Generate a random token with given length and characters.

bimmer_connected.api.utils.get_capture_position(base64_background_img: str) — str

Get the position of the capture in the background image.

bimmer_connected.api.utils.get_correlation_id() — Dict[str, str]

Generate corrlation headers.

async bimmer_connected.api.utils.handle_httpstatuserror (ex: HTTPStatusError, module: str = 'API',
log_handler: Logger | None = None,
dont_raise: bool = False) — None

Try to extract information from response and re-raise Exception.

bimmer_connected.api.utils.try_import_pillow_image()
Try to import PIL.Image and return if successful.

We only need to load PIL if we are in China, so we try to avoid a general dependency on Pillow for all users.
Installing Pillow on Raspberry Pi (ARMv7) is painful.

8.15 bimmer_connected.const

URLSs for different services and error code mapping.

class bimmer_connected.const.CarBrands (value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

Car brands supported by the MyBMW APL
BMW = "bmw'

MINI = 'mini’

34 Chapter 8. Disclaimer

bimmer_connected Documentation

class bimmer_connected.const.Regions (value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

Regions of the world with separate servers.

CHINA = 'cn'

NORTH_AMERICA = 'na'

REST_OF_WORLD 'row'

8.16 bimmer_connected.models

Generals models used for bimmer_connected.

class bimmer_connected.models.AnonymizedResponse (filename: str, content: List | Dict | str | None =
None)

An anonymized response.

content: List | Dict | str | None = None
filename: str

class bimmer_connected.models.ChargingSettings (chargingTarget: int | None, acLimitValue: int | None =
None)

Charging settings to control the vehicle.
acLimitValue: int | None = None
chargingTarget: int | None
dcLoudness = None
isUnlockCableActive = None

class bimmer_connected.models.GPSPosition(latitude: float | None, longitude: float | None)
GPS coordinates.

latitude: float | None
longitude: float | None

exception bimmer_connected.models.MyBMWAPIError
General BMW API error.

exception bimmer_connected.models.MyBMWAuthError
Auth-related error from BMW API (HTTP status codes 401 and 403).

exception bimmer_connected.models.MyBMWQuotaError
Quota exceeded on BMW API.

exception bimmer_connected.models.MyBMWRemoteServiceError

Error when executing remote services.

8.16. bimmer_connected.models 35

bimmer_connected Documentation

class bimmer_connected.models.PointOfInterest (lat: dataclasses.InitVar[float], lon:

A Point of Interest to be sent to the car.

address: str | None = None

dataclasses.InitVar[float], name: str | None = 'Sent with
by bimmer_connected', street: dataclasses.InitVar([str] =
None, postal_code: dataclasses.InitVar[str] = None,
city: dataclasses.InitVar[str] = None, country:
dataclasses.InitVar[str] = None, formattedAddress: str |
None = None, address: str | None = None,
baseCategoryld: str | None = None, phoneNumber: str |
None = None, provider: str | None = None, providerld:
str | None = None, providerPoild: str =", sourceType:
str | None = None, type: str | None = None,
vehicleCategoryld: str | None = None)

baseCategoryIld: str | None = None

city: dataclasses.InitVar[str] = None

coordinates: GPSPosition

country: dataclasses.InitVar[str] = None

entryPoints: List

formattedAddress: str | None

lat: dataclasses.InitVar[float]

None

locationAddress: PointOfInterestAddress | None

lon: dataclasses.InitVar[float]

name: str | None = 'Sent with by bimmer_connected'

phoneNumber: str | None = None

postal_code: dataclasses.InitVar[str] = None

provider: str | None = None

providerId: str | None = None

providerPoild: str =

sourceType: str | None = None

street: dataclasses.InitVar[str] = None

type: str | None = None

vehicleCategoryId: str | None

None

36

Chapter 8. Disclaimer

bimmer_connected Documentation

class bimmer_connected.models.PointOfInterestAddress(street: str | None = None, postalCode: str |

Address data of a PointOfInterest.

banchi: str | None = None
chome: str | None = None

city: str | None = None
country: str | None = None
countryCode: str | None = None
district: str | None = None

go: str | None = None

houseNumber: str | None = None
postalCode: str | None = None
region: str | None = None
regionCode: str | None = None
settlement: str | None = None
street: str | None = None

None = None, city: str | None = None, country:
str | None = None, banchi: str | None = None,
chome: str | None = None, countryCode: str |
None = None, district: str | None = None, go:
str | None = None, houseNumber: str | None =
None, region: str | None = None, regionCode:
str | None = None, settlement: str | None =
None)

class bimmer_connected.models.StrEnum(value, names=None, *, module=None, qualname=None,
type=None, start=1, boundary=None)

A string enumeration of type (str, Enum). All members are compared via upper(). Defaults to UNKNOWN.

class bimmer_connected.models.ValueWithUnit (value: int | float | None, unit: str | None)

A value with a corresponding unit.

unit: str | None
Alias for field number 1

value: int | float | None
Alias for field number 0

class bimmer_connected.models.VehicleDataBase
A base class for parsing and storing complex vehicle data.

classmethod from_vehicle_data(vehicle_data: Dict)
Create the class based on vehicle data from API.

update_from_vehicle_data(vehicle_data: Dict)
Update the attributes based on vehicle data from APIL.

8.16. bimmer_connected.models

37

bimmer_connected Documentation

8.17 bimmer_connected.utils

General utils and base classes used in the library.

class bimmer_connected.utils.MyBMWISONEncoder (*, skipkeys=Fulse, ensure_ascii=True,
check_circular=True, allow_nan=True,

sort_keys=False, indent=None, separators=None,

default=None)
JSON Encoder that handles data classes, properties and additional data types.

default (o) — str| dict

Implement this method in a subclass such that it returns a serializable object for o, or calls the base imple-

mentation (to raise a TypeError).

For example, to support arbitrary iterators, you could implement default like this:

def default(self, o):
try:
iterable = iter(o)
except TypeError:
pass
else:
return list(iterable)
Let the base class default method raise the TypeError
return JSONEncoder.default(self, o)

bimmer_connected.utils.get_class_property_names(obj: object)
Return the names of all properties of a class.

bimmer_connected.utils.log_response_store_to_file (response_store: List/ AnonymizedResponse],

logfile_path: Path) — None

Log all responses to files.

bimmer_connected.utils.parse_datetime (date_str: str) — datetime | None
Convert a time string into datetime.

bimmer_connected.utils.to_camel_case(input_str: str) — str
Convert SNAKE_CASE or snake_case to camelCase.

8.18 bimmer_connected.vehicle

The bimmer_connected.vehicle module contains all data & parsers for a vehicle.

8.18.1 bimmer_connected.vehicle.vehicle

Models state and remote services of one vehicle.

class bimmer_connected.vehicle.vehicle.LscType (value, names=None, *, module=None,
qualname=None, type=None, start=1I,
boundary=None)

Known Values for Isc_type field.

Not really sure, what this value really contains.

38 Chapter 8.

Disclaimer

bimmer_connected Documentation

ACTIVATED = 'ACTIVATED'
NOT_CAPABLE = 'NOT_CAPABLE'
NOT_SUPPORTED = 'NOT_SUPPORTED'
UNKNOWN = "UNKNOWN'

class bimmer_connected.vehicle.vehicle.MyBMWVehicle (account: MyBMWAccount, vehicle_base: dict,
fetched_at: datetime | None = None)

Models state and remote services of one vehicle.
Parameters
* account — MyBMW account this vehicle belongs to
» attributes - attributes of the vehicle as provided by the server

property available_attributes: List[str]
Get the list of non-drivetrain attributes available for this vehicle.

property brand: CarBrands
Get the car brand.

combine_data(data: Dict | List[Dict], fetched_at: datetime | None = None) — Dict

Combine API responses and additional information to a single dictionary.

property drive_train: DriveTrainType
Get the type of drive train of the vehicle.

property drive_train_attributes: List[str]
Get list of attributes available for the drive train of the vehicle.

The list of available attributes depends if on the type of drive train. Some attributes only exist for elec-
tric/hybrid vehicles, others only if you have a combustion engine. Depending on the state of the vehicle,
some of the attributes might still be None.

async get_vehicle_image (direction: VehicleViewDirection) — bytes

Get a rendered image of the vehicle.
:returns bytes containing the image in PNG format.

async get_vehicle_state() — None
Retrieve vehicle data from BMW servers.

property has_combustion_drivetrain: bool

Return True if vehicle is equipped with an internal combustion engine.
In this case we can get the state of the gas tank.

property has_electric_drivetrain: bool
Return True if vehicle is equipped with a high voltage battery.

In this case we can get the state of the battery in the state attributes.
property is_charging_plan_supported: bool

Return True if charging profile is available and can be set via API.
property is_charging_settings_supported: bool

Return True if charging settings can be set via API.

8.18. bimmer_connected.vehicle 39

bimmer_connected Documentation

property is_lsc_enabled: bool

Return True if LastStateCall is enabled (vehicle automatically updates API).

property is_remote_charge_start_enabled: bool
Return True if charging can be started via the APL.

property is_remote_charge_stop_enabled: bool
Return True if charging can be stop via the API.

property is_remote_climate_start_enabled: bool
Return True if AC/ventilation can be started via the API.

property is_remote_climate_stop_enabled: bool
Return True if AC/ventilation can be stopped via the APIL.

property is_remote_horn_enabled: bool

Return True if the horn can be activated via the API.

property is_remote_lights_enabled: bool
Return True if the lights can be activated via the APIL.

property is_remote_lock_enabled: bool
Return True if vehicle can be locked via the API.

property is_remote_sendpoi_enabled: bool
Return True if POIs can be set via the API.

property is_remote_set_ac_limit_enabled: bool
Return True if AC limit can be set via the API.

property is_remote_set_target_soc_enabled: bool
Return True if Target SoC can be set via the API.

property is_remote_unlock_enabled: bool
Return True if POIs can be unlocked via the API.

property is_vehicle_active: bool

Deprecated, always returns False.

Check if the vehicle is active/moving.

If the vehicle was active/moving at the time of the last status update, current position is not available.

property is_vehicle_tracking_enabled: bool
Return True if vehicle finder is enabled in vehicle.
property lsc_type: LscType
Get the IscType of the vehicle.

Not really sure what that value really means. If it is NOT_CAPABLE, that probably means that the vehicle

state will not contain much data.
property mileage: ValueWithUnit
Get the mileage of the vehicle.

property name: str
Get the name of the vehicle.

40

Chapter 8. Disclaimer

bimmer_connected Documentation

property timestamp: datetime | None

Get the timestamp when the data was recorded.

update_state(data: Dict | List[Dict], fetched_at: datetime | None = None) — None
Update the state of a vehicle.

property vin: str
Get the VIN (vehicle identification number) of the vehicle.

class bimmer_connected.vehicle.vehicle.VehicleViewDirection(value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Viewing angles for the vehicle.
This is used to get a rendered image of the vehicle.

FRONT = 'FrontView'
FRONTSIDE = 'AngleSideViewForty'
SIDE = 'SideViewLeft'

UNKNOWN = 'UNKNOWN'

8.18.2 bimmer_connected.vehicle.remote_services

Trigger remote services on a vehicle.

class bimmer_connected.vehicle.remote_services.ExecutionState (value, names=None, *,
module=None, qualname=None,
type=None, start=1,
boundary=None)

Enumeration of possible states of the execution of a remote service.

DELIVERED = 'DELIVERED'
ERROR = 'ERROR'
EXECUTED = 'EXECUTED'
IGNORED = 'IGNORED'
INITIATED = 'INITIATED'

PENDING

'PENDING'

UNKNOWN = "UNKNOWN'

class bimmer_connected.vehicle.remote_services.RemoteServiceStatus (response: dict, event_id: str |
None = None)

Wraps the status of the execution of a remote service.

class bimmer_connected.vehicle.remote_services.RemoteServices (vehicle: MyBMW Vehicle)

Trigger remote services on a vehicle.

async trigger_charge_start() — RemoteServiceStatus
Trigger the vehicle to start charging.

8.18. bimmer_connected.vehicle 41

bimmer_connected Documentation

async trigger_charge_stop() — RemoteServiceStatus
Trigger the vehicle to stop charging.
async trigger_charging profile_update (charging_mode: ChargingMode | None = None,

precondition_climate: bool | None = None) —
RemoteServiceStatus

Update the charging profile on the vehicle.

async trigger_charging_settings_update (target_soc: int | None = None, ac_limit: int | None = None)
— RemoteServiceStatus

Update the charging settings on the vehicle.

async trigger_remote_air_conditioning() — RemoteServiceStatus
Trigger the air conditioning to start.

async trigger_remote_air_conditioning_stop() — RemoteServiceStatus
Trigger the air conditioning to stop.

async trigger_remote_door_lock() — RemoteServiceStatus
Trigger the vehicle to lock its doors.

async trigger_remote_door_unlock() — RemoteServiceStatus
Trigger the vehicle to unlock its doors.

async trigger_remote_horn() — RemoteServiceStatus
Trigger the vehicle to sound its horn.

async trigger_remote_light_flash() — RemoteServiceStatus
Trigger the vehicle to flash its headlights.

async trigger_remote_service (service_id: Services, params: Dict | None = None, data: Any = None,
refresh: bool = False) — RemoteServiceStatus

Trigger a remote service and wait for the result.

async trigger_remote_vehicle_finder() — RemoteServiceStatus
Trigger the vehicle finder.

async trigger_send_poi (poi: PointOflnterest | Dict) — RemoteServiceStatus
Send a PointOfInterest to the vehicle.

Parameters
poi — A PointOflnterest containing at least ‘lat’ and ‘lon’ and optionally ‘name’, ‘street’,
‘city’, ‘postalCode’, ‘country’

class bimmer_connected.vehicle.remote_services.Services (value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Enumeration of possible services to be executed.

ATIR_CONDITIONING = 'climate-now'
CHARGE_START = 'start-charging'
CHARGE_STOP = 'stop-charging'
CHARGING_PROFILE = 'CHARGING_PROFILE'

CHARGING_SETTINGS = 'CHARGING_SETTINGS'

42 Chapter 8. Disclaimer

bimmer_connected Documentation

DOOR_LOCK = 'door-lock'
DOOR_UNLOCK = 'door-unlock'’
HORN = 'horn-blow'
LIGHT_FLASH = 'light-flash'
SEND_POI = 'SEND_POI'

VEHICLE_FINDER = 'vehicle-finder'

8.18.3 bimmer_connected.vehicle.charging_profile

Models the charging profiles of a vehicle.

class bimmer_connected.vehicle.charging_profile.ChargingMode (value, names=None, *,

Charging mode of electric vehicle.

DELAYED_CHARGING = 'DELAYED_CHARGING'
IMMEDIATE_CHARGING = 'IMMEDIATE_CHARGING'

UNKNOWN = "UNKNOWN'

module=None, qualname=None,
type=None, start=1,
boundary=None)

class bimmer_connected.vehicle.charging_profile.ChargingPreferences (value, names=None, *,

Charging preferences of electric vehicle.

CHARGING_WINDOW = 'CHARGING_WINDOW'

NO_PRESELECTION 'NO_PRESELECTION'

UNKNOWN = "UNKNOWN'

class bimmer_connected.vehicle.charging_profile.ChargingProfile(is_pre_entry_climatization_enabled:

Models the charging profile of a vehicle.

module=None,
qualname=None,
type=None, start=1,
boundary=None)

bool, timer_type: TimerTypes,
departure_times:
List[DepartureTimer],
preferred_charging_window:
ChargingWindow,
charging_preferences:
ChargingPreferences,
charging_mode: ChargingMode,
ac_current_limit: int | None =
None, ac_available_limits: list |
None = None, charg-
ing_preferences_service_pack:
str | None = None)

8.18. bimmer_connected.vehicle

43

bimmer_connected Documentation

ac_available_limits: 1list | None = None
Available AC limits to be selected.

ac_current_limit: int | None = None
Returns the ac current limit.

charging _mode: ChargingMode
Returns the preferred charging mode.

charging preferences: ChargingPreferences
Returns the preferred charging preferences.

charging_preferences_service_pack: str | None = None

Service Pack required for remote service format.
departure_times: List[DepartureTimer]
List of timers.
format_for_remote_service() — dict
Format current charging profile as base to be sent to remote service.
is_pre_entry_climatization_enabled: bool
Get status of pre-entry climatization.
preferred_charging_window: ChargingWindow
Returns the preferred charging window.
timer_type: TimerTypes
Returns the current timer plan type.
class bimmer_connected.vehicle.charging_profile.ChargingWindow(window_dict: dict)
A charging window.
property end_time: time
End of the charging window.
property start_time: time
Start of the charging window.
class bimmer_connected.vehicle.charging_profile.DepartureTimer (timer_dict: dict)
A departure timer.
property action: str | None
What does the timer do.
property start_time: time | None
Deperture time for this timer.
property timer_id: int | None
ID of this timer.
property weekdays: List[str]

Active weekdays for this timer.

class bimmer_connected.vehicle.charging_profile.TimerTypes (value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Different timer types.

44 Chapter 8. Disclaimer

bimmer_connected Documentation

TWO_TIMES_TIMER = 'TWO_TIMES_TIMER'
UNKNOWN = 'UNKNOWN'

WEEKLY_PLANNER = 'WEEKLY_PLANNER'

8.18.4 bimmer_connected.vehicle.doors_windows

Models the state of a vehicle.

class bimmer_connected.vehicle.doors_windows.DoorsAndWindows (door_lock_state: ~bim-
mer_connected.vehicle.doors_windows.LockState
= LockState. UNKNOWN,, lids: ~typ-
ing.List[~bimmer_connected.vehicle.doors_windows.Li
= <factory>, windows: ~typ-
ing.List[~bimmer_connected.vehicle.doors_windows.W
= <factory>)

Provides an accessible version of properties.doorsAndWindows.
property all_lids_closed: bool
Check if all lids are closed.
property all_windows_closed: bool
Check if all windows are closed.
door_lock_state: LockState = 'UNKNOWN'
Get state of the door locks.
lids: List[Lid]
All lids (doors+hood+trunk) of the car.
property open_lids: List[Lid]
Get all open lids of the car.
property open_windows: List[Window]
Get all open windows of the car.
windows: List[Window]
All windows (doors+sunroof) of the car.

class bimmer_connected.vehicle.doors_windows.Lid(name: str, state: str)
A 1id of the vehicle.

Lids are: Doors + Trunk + Hatch
property is_closed: bool

Check if the lid is closed.
name

name of the lid

class bimmer_connected.vehicle.doors_windows.LidState (value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Possible states of the hatch, trunk, doors, windows, sun roof.

8.18. bimmer_connected.vehicle 45

bimmer_connected Documentation

CLOSED = 'CLOSED'
INTERMEDIATE = 'INTERMEDIATE'
INVALID = 'INVALID'

OPEN = 'OPEN'

OPEN_TILT = 'OPEN_TILT'

UNKNOWN = "UNKNOWN'

class bimmer_connected.vehicle.doors_windows.LockState (value, names=None, *, module=None,
qualname=None, type=None, start=1,

Possible states of the door locks.

LOCKED = 'LOCKED'

PARTIALLY_LOCKED = 'PARTIALLY_LOCKED'
SECURED = 'SECURED'

SELECTIVE_LOCKED = 'SELECTIVE_LOCKED'
UNKNOWN = "UNKNOWN'

UNLOCKED = 'UNLOCKED'

boundary=None)

class bimmer_connected.vehicle.doors_windows.Window(name: str, state: str)

A window of the vehicle.

A window can be a normal window of the car or the sun roof.

8.18.5 bimmer_connected.vehicle. fuel_and_battery

Generals models used for bimmer_connected.

class bimmer_connected.vehicle. fuel_and_battery.ChargingState (value, names=None, *,

Charging state of electric vehicle.

CHARGING = 'CHARGING'

COMPLETE = 'COMPLETE'
DEFAULT = 'DEFAULT'

ERROR = 'ERROR'

FINISHED_FULLY_CHARGED = 'FINISHED_FULLY_CHARGED'

FINISHED_NOT_FULL = 'FINISHED_NOT_FULL'

FULLY_CHARGED = 'FULLY_CHARGED'

module=None, qualname=None,

type=None, start=1,
boundary=None)

46

Chapter 8.

Disclaimer

bimmer_connected Documentation

INVALID = 'INVALID'

NOT_CHARGING = 'NOT_CHARGING'

PLUGGED_IN = 'PLUGGED_IN'

TARGET_REACHED = 'TARGET_REACHED'

UNKNOWN = "UNKNOWN'

WAITING_FOR_CHARGING = 'WAITING_FOR_CHARGING'

class bimmer_connected.vehicle.fuel_and_battery.FuelAndBattery (remaining_range_fuel:
ValueWithUnit | None = (None,
None), remaining_range_electric:
ValueWithUnit | None = (None,
None), remaining_range_total:
ValueWithUnit | None = (None,
None), remaining_fuel:
ValueWithUnit | None = (None,
None), remaining_fuel_percent:
int | None = None,
remaining_battery_percent: int |
None = None, charging_status:
ChargingState | None = None,
charging_start_time: datetime |
None = None, charging_end_time:
datetime | None = None,
is_charger_connected: bool =
False, charging_target: int | None
= None)

Provides an accessible version of status. FuelAndBattery.

charging _end_time: datetime | None = None
The estimated time the vehicle will have finished charging.

charging start_time: datetime | None = None
The planned time the vehicle will start charging in UTC.

charging_status: ChargingState | None = None
Charging state of the vehicle.

charging_target: int | None = None
State of charging target in percent.

classmethod from_vehicle_data(vehicle_data: Dict)
Create the class based on vehicle data from API.

is_charger_connected: bool = False
Get status of the connection

remaining_battery_percent: int | None = None
State of charge of the high voltage battery in percent.

remaining_fuel: ValueWithUnit | None = (None, None)
Get the remaining fuel of the vehicle.

8.18. bimmer_connected.vehicle 47

bimmer_connected Documentation

remaining_fuel_percent: int | None = None
State of charge of the high voltage battery in percent.

remaining_range_electric: ValueWithUnit | None = (None, None)

Get the remaining range of the vehicle on electricity.

remaining_range_fuel: ValueWithUnit | None = (None, None)

Get the remaining range of the vehicle on fuel.

remaining_range_total: ValueWithUnit | None = (None, None)

Get the total remaining range of the vehicle (fuel + electricity, if available).

8.18.6 bimmer_connected.vehicle.location

Generals models used for bimmer_connected.

class bimmer_connected.vehicle.location.VehicleLocation(location: GPSPosition | None = None,
heading: int | None = None,
vehicle_update_timestamp: datetime | None
= None, account_region: Regions | None =
None, remote_service_position: Dict |
None = None)

The current position of a vehicle.

account_region: Regions | None = None

classmethod from_vehicle_data(vehicle_data: Dict)
Create the class based on vehicle data from API.

heading: int | None = None

The last known heading/direction of the vehicle.

location: GPSPosition | None = None

The last known position of the vehicle.
remote_service_position: Dict | None = None
set_remote_service_position(remote_service_dict: Dict)

Store remote service position returned from vehicle finder service.

vehicle_update_timestamp: datetime | None = None

8.18.7 bimmer_connected.vehicle.reports

Models the state of a vehicle.

class bimmer_connected.vehicle.reports.CheckControlMessage (description_short: str,
description_long: str | None, state:
CheckControlStatus)

Check control message sent from the server.

description_long: str | None

description_short: str

48 Chapter 8. Disclaimer

bimmer_connected Documentation

classmethod from_api_entry(type: str, severity: str, longDescription: str | None = None, **kwargs)
Parse a check control entry from the API format to CheckControlMessage.

state: CheckControlStatus

class bimmer_connected.vehicle.reports.CheckControlMessageReport (messages: ~typ-
ing.List[~bimmer_connected.vehicle.reports.Chec
= <factory>,
has_check_control_messages:
bool = False)

Parse and summarizes check control messages (e.g. low tire pressure).

has_check_control_messages: bool = False
Indicate if check control messages are present.

messages: List[CheckControlMessage]
List of check control messages.

class bimmer_connected.vehicle.reports.CheckControlStatus (value, names=None, *, module=None,
qualname=None, type=None, start=1,
boundary=None)

Status of the condition based services.

CRITICAL = 'CRITICAL'
HIGH = 'HIGH'

LOW = 'LOW'

MEDIUM = 'MEDIUM'

OK = 'OK'

UNKNOWN = "UNKNOWN'

class bimmer_connected.vehicle.reports.ConditionBasedService(service_type: str, state:
ConditionBasedServiceStatus,
due_date: datetime | None,
due_distance: ValueWithUnit)

Entry in the list of condition based services.

due_date: datetime | None
due_distance: ValueWithUnit

classmethod from_api_entry(type: str, status: str, dateTime: str | None = None, mileage: int | None =
None, **kwargs)

Parse a condition based service entry from the API format to ConditionBasedService.

service_type: str
state: ConditionBasedServiceStatus

class bimmer_connected.vehicle.reports.ConditionBasedServiceReport (messages: ~typ-
ing.List[~bimmer_connected.vehicle.reports.Co
= <factory>,
is_service_required: bool =
False)

8.18. bimmer_connected.vehicle 49

bimmer_connected Documentation

Parse and summarizes condition based services (e.g. next oil service).

is_service_required: bool = False

Indicate if a service is required.

messages: List[ConditionBasedService]

List of the condition based services.

class bimmer_connected.vehicle.reports.ConditionBasedServiceStatus (value, names=None, *,

Status of the condition based services.

module=None,
qualname=None,
type=None, start=1,
boundary=None)

OK = 'OK'
OVERDUE = 'OVERDUE'
PENDING = 'PENDING'
UNKNOWN = 'UNKNOWN'
class bimmer_connected.vehicle.reports.Headunit (idrive_version: str =", headunit_type: str =",

Parse and summarizes headunit hard/software versions.

headunit_type: str =
Type of headunit.

idrive_version: str =
IDRIVE generation.

software_version: str =

Current software revision of vehicle

software_version: str="")

50

Chapter 8. Disclaimer

CHAPTER
NINE

INDICES AND TABLES

* genindex
* modindex

¢ search

51

bimmer_connected Documentation

52 Chapter 9. Indices and tables

b

bimmer_connected.
bimmer_connected.
bimmer_connected.
bimmer_connected.
bimmer_connected.
bimmer_connected.
bimmer_connected.
bimmer_connected.
bimmer_connected.
bimmer_connected.
bimmer_connected.
bimmer_connected.
bimmer_connected.
bimmer_connected.
bimmer_connected.

account,

30

api.authentication, 32
api.client, 33

api.regions, 33

api.utils, 34

const, 34

models, 35

utils, 38
vehicle.charging_profile, 43
vehicle.doors_windows, 45
vehicle.fuel_and_battery, 46
vehicle.location, 48
vehicle.remote_services, 41
vehicle.reports, 48
vehicle.vehicle, 38

PYTHON MODULE INDEX

53

bimmer_connected Documentation

54 Python Module Index

INDEX

A method), 32
(bim- authentication (bim-
mer_connected.api.client. MyBMWClientConfiguration

ac_available_limits
mer_connected.vehicle.charging_profile. ChargingProfile

attribute), 43 attribute), 33
ac_current_limit (bim- available_ attributes (bim-
mer_connected.vehicle.charging_profile.ChargingProfile Mer—connected.vehicle.vehicle. MyBMWVehicle
attribute), 44 property), 39
account_region (bim-
mer_connected.vehicle.location.VehicleLocation B
attribute), 48 banchi (bimmer_connected.models. PointOfInterestAddress
acLimitValue (bimmer_connected.models. ChargingSettings attribute), 37
attribute), 35 baseCategoryld (bim-
action (bimmer_connected.vehicle.charging_profile. DepartureTimermer_connected.models. PointOfinterest at-
property), 44 tribute), 36
ACTIVATED (bimmer_connected.vehicle.vehicle.LscType bimmer_connected.account
attribute), 38 module, 30
add_vehicle() (bimmer_connected.account. MyBMWAccolimmer_connected.api.authentication
method), 30 module, 32
address (bimmer_connected.models.PointOfInterest at- bimmer_connected.api.client
tribute), 36 module, 33
ATR_CONDITIONING (bim- bimmer_connected.api.regions
mer_