30.12.21, 11:19 Intercepting Flutter traffic on Android (ARMv8) — NVISO Labs

NVISO Labs

Cyber security research, straight from the lab! a8,

® a

Intercepting Flutter traffic on Android (ARMv8)

& Jeroen Beckers W android, Mobile (® May 20,2020 = 6 Minutes

In a previous blogpost, I explained my steps for reversing the flutter.so binary to identify the
correct offset/pattern to bypass certificate validation. As a very quick summary: Flutter doesn’t
use the system’s proxy settings, and it doesn’t use the system’s certificate store, so
normal approaches don’t work. My previous guide only explained how to intercept Flutter on
ARMv7 Android devices, but the steps don’t fully transfer to ARMv8 so this blogpost quickly
explains the steps for ARMv8

This blogpost is written as a guide / thought process, so you can find a TL;DR at the bottom.

Testing apps

First, we'll need a testing app. I've slightly updated the previous one to have two buttons: one for
HTTP and one for HTTPS calls. This way, I can validate whether the proxy works, and then

whether the Frida script works.
The app can be downloaded from our GitHub.

There are two functions in the app that call an HTTP and HTTPS endpoint:

1| void callHTTP(){
2 client = HttpClient();
3 _status = "Calling...";

https://blog.nviso.eu/2020/05/20/intercepting-flutter-traffic-on-android-x64/ 1/8

30.12.21, 11:19 Intercepting Flutter traffic on Android (ARMv8) — NVISO Labs

4 client

5 .getUrl(Uri.parse('http://neverssl.com'))

6 .then((request) => request.close())

7 .then((response) => setState((){_status = "HTTP: SUCCESS (" + respons
8 .catchError((e) =>

9 setState(() {

10 _status = "HTTP: ERROR";

11 print(e.toString());

12)

13)5

14 | }

15 | void callHTTPS(){

16 client = HttpClient();

17 _status = "Calling...";

18 client

19 .getUrl(Uri.parse('https://www.nviso.eu')) // produces a request obje
20 .then((request) => request.close()) // sends the request
21 .then((response) => setState((){

22 _status = "HTTPS: SUCCESS (" + resp
23 1)

24 .catchError((e) =>

25 setState(() {

26 _status = "HTTPS: ERROR";

27 print(e.toString());

28 1)

29)

30| }

Proxying the application

Flutter applications still don’t automatically use the system’s proxy, unless the developer adds this
functionality by creating custom Android & iOS plugins that provide this information. Obviously,
many developers won’t do this, so we still need to intercept the traffic using ProxyDroid’s root-
based method rather than configuring the WIFI’s proxy through the Android OS. After
configuring ProxyDroid with the correct settings, Burp can see the requests from the app.

]

Froxy me please

—rarm _
FERTRETA Rt
Status Status
HTTP: SUCCESS (Sun, 26 e
Apr 2020 01:59:56 GMT) HETERERROR

The HTTP requests work without any special requirement, while the HTTPS call prints an error to

logcat:

https://blog.nviso.eu/2020/05/20/intercepting-flutter-traffic-on-android-x64/ 2/8

30.12.21, 11:19 Intercepting Flutter traffic on Android (ARMv8) — NVISO Labs
04-26 16:59:02.758 11773 11802 E flutter [ERROR flutter/lib/ui/ui_dart_state.c

04-26 16:59:02.758 11773 11802 E flutter : NO_START_LINE(pem_lib.c: 622)
04-26 16:59:02.758 11773 11802 E flutter : PEM routines(by_file.c:148)
04-26 16:59:02.758 11773 11802 E flutter : NO_START_LINE(pem_lib.c:622)
04-26 16:59:02.758 11773 11802 E flutter : PEM routines(by file.c:148)
04-26 16:59:02.758 11773 11802 E flutter : CERTIFICATE_VERIFY_FAILED: self
< »

Disabling SSL verification

I initially thought the x64 version would be identical to the x86 version. It’s the same source code,
so why would the steps be any different... Unfortunately, when searching for ‘x509.cc’ in

flutter.so, I found the same number of hits, but none of them were the correct function:

S_../../third partv/boringssl/src/_00lcg85a XBEF[4]: FON_005f4elc:005£65£4 (*),
FUN_0065a224:00&85a3a0 (*),
FUN_0065a224:0065a3b4 (*),
FUN_0065a224:0065a400 (*)
J01cE85a 2e 2e 2f ds "../../third party/boringssl/src/3sl/ssl_x509....
2e 2e 2f
74 68 69 ...

The previous approach seems inefective

It’s pretty obvious that the ssl_x509.cc class has been compiled somewhere in the 0x650000
region, but that’s still a lot of functions to try to find the correct one. If searching for the filename

doesn’t work, maybe searching for the line number would work. If we take a look at the

ssl_crypto_x509_session_verify_cert_chain function again, we can see that the
OPENSSIL,_PUT_ERROR macro is called at line 390. Searching for the number 390 (or 0x186)

gives us some results (Search > For Scalars...):

B libflutter.so = E _dl x
Location [, | Preview Hex |Decima| (5i.. |Fur1ctior1 Mame
00103440 ddw 186h (dword[437]([324]) 188 390

001aatea ushort 18&h 1886 390

001ab348 ushort 186h 188 390

0037d124 add =8, x8, #0x186 18& 380 FUM_0037c135
003b30as mov w3, #0x186 188 390 FUN_003b&fac
0053609¢c add x1,x1,$#0x186 18% 390 FUM_00533184

ov w3, $0x186 a6 390 FUN_0065adec
00&6e1574 add =3, x8, #0x186 188 390 FUM_006e1384
006fdas4 add x93, x5, $0x186 186 390 FUN_DD6fdsbe
0075a5b8 cmp w0, £0x184 186 390 FUM_0075a5b8
|Fi|ber:) = -
| Min: -2147453547 Max: | 2147433647

Searching for magic numbers

https://blog.nviso.eu/2020/05/20/intercepting-flutter-traffic-on-android-x64/ 3/8

30.12.21, 11:19 Intercepting Flutter traffic on Android (ARMv8) — NVISO Labs
A few of the results are around the 0x650000 region. The highlighted function (FUN_0065a4ec)
looks like a good candidate, as the constant is loaded in w3 (the lower 32bit part of the x3
register), which is one of the argument registers on ARMv8. The function FUN_o0o065a4ec also

has the correct signature, and it generally looks the same as the ARMv7 version:

uParmi) Z lulonglong FUN_OO6€Sadec (longlong lParml,undsfinedf uFarmz,undsfined *puParmi)

x64

g *+) (1Parml + Oxak) == {longlong *)O0x0) || (**{longlong **) (1Parml + Oxal) == 0)) {

FUN_0061a464 {auStackes, 0, *unaff x21), iVarl == 0)) {

FUN_007bed4 S8 (auStackilZ);
arl = FUN_0063cced();

if (iVarl == 0) goto LAB_0065a600;

Varé = {ulonglong *) (local 11 + Oxl0):

Decompiled method in x86 vs x64

My normal approach would be to copy the first bytes of FUN_o0065a4ec and search for them in-
memory while the application is running, as I did in the previous blogpost, so I don’t need to find
the offset each time. Unfortunately, Frida’s Memory.scan seems to crash on my test app, so for
now we’ll have to use the offset. (Edit: An alternative approach was posted in the comments of

this post, using Process.enumerateRangesSync)

Ghidra uses 0x100000 as the base address of the module, so we have to subtract that from the

Ghidra offset, resulting in an offset of 0x55a4ec.

Opening Ghidra every time works, but it’s not that convenient. We can also use binwalk to find

the correct offset based on those first bytes of the function:

1| # The first bytes of the FUN_0065adec function

2 ff 03 05 dl1 fc 6b ©f a9 f9 63 10 a9 f7 5b 11 a9 f5 53 12 a9 f3 7b 13 a9 08 ©

3| # Find it using binwalk

4 | binwalk -R "\xff\x03\x05\xd1\xfc\x6b\x0f\xa9\xf9\x63\x10\xa9\xf7\x5b\x11\xa9

5 | DECIMAL HEXADECIMAL DESCRIPTION

I I T T L T T L L L T,

7 | 5612780 Ox55A4EC Raw signature (\xff\x@3\x05\xd1\xfc\x6b\x0f\xa
4 »

Let’s throw this in a Frida script and test it!

https://blog.nviso.eu/2020/05/20/intercepting-flutter-traffic-on-android-x64/ 4/8

30.12.21, 11:19

oooNOOUVTA, WNER

Intercepting Flutter traffic on Android (ARMv8) — NVISO Labs

function hook _ssl verify result(address)

{

Interceptor.attach(address, {

onEnter:

function(args) {

console.log("Disabling SSL validation")

}s

onlLeave:

{

retval.

}
s

console.log("Retval:

function(retval)

+ retval)
replace(0x1);

function disablePinning(){

// Change the offset on the line below with the binwalk result

// If you are on 32 bit, add 1 to the offset to indicate it is a THUMB

// Otherwise, you will get

hook_ssl verify_result(address);

}

setTimeout(disablePinning, 1000)

Running this file using Frida gives the expected outcome:

LCooNOTUVTA_WNER

(secenv) =
/ _ |
|l |
> _ |
/1]

/_/ |

Spawned “be.n

flutter frida -Uf be.nviso.flutter_app -1 hook.js --no-pause

"Error: unable to intercept function at ...
var address = Module.findBaseAddress('libflutter.so').add(@x55adec)

Frida 12.8.20 - A world-class dynamic instrumentation toolkit

Commands:
help -> Displays the help system
object? -> Display information about 'object'’

exit/quit -> Exit

More info at https://www.frida.re/docs/home/
viso.flutter_app . Resuming main thread!

[SM-G950F: :be.nviso.flutter_app]-> disablePinning()

[SM-G950F: :be.nviso.flutter_app]-> Disabling SSL validation

Retval: 0x0

[SM-G950F: :be.nviso.flutter_app]->

https://blog.nviso.eu/2020/05/20/intercepting-flutter-traffic-on-android-x64/

5/8

30.12.21, 11:19 Intercepting Flutter traffic on Android (ARMv8) — NVISO Labs

Bt = M P v

Proxy me please

HTTPS: SUCCESS (Sun, 26
Apr 2020 15:26:46 GMT)

SSL Verification successfully disabled

Tangent: Why can this app perform cleartext HTTP calls?

My flutter app is making HTTP connections. This is forbidden by default since Android P, and
you have to add a Network Security Policy that explicitly allows cleartext request if you still want
to do so on Android 9+. My test app does not have a Network Security Policy, so what’s going on?

The reason for this is the same reason why these blog posts are necessary: Flutter doesn’t use
default Android libraries. Because Flutter creates low level sockets and implements the HTTP
stack on top of that, the requests never pass by the Android security controls that should prevent
cleartext traffic from being used. This is an important thing to keep in mind when auditing the

security of Flutter apps, as you might miss things if you’re not careful.

TL;DR (ARMv7 and ARMv8)
1. Redirect with ProxyDroid on rooted device since Flutter apps are still proxy-unaware
2. Find the offset using binwalk

3. Use the Frida script to hook the method at that offset

Since the last blogpost, the signature for 32bit also changed, so I've included both signatures.

1| # Method signatures for ARMv7 (32bit)
2 2d e9 fo 4f a3 bo 81 46 50 20 10 70

https://blog.nviso.eu/2020/05/20/intercepting-flutter-traffic-on-android-x64/ 6/8

30.12.21, 11:19

Intercepting Flutter traffic on Android (ARMv8) — NVISO Labs

2d e9 o 4f a3 bo 82 46 50 20 10 70

Get the offset

binwalk -R "\x2d\xe9\xfO\x4f\xa3\xb0\x81\x46\x50\x20\x10\x70" -R "\x2d\xe9\
DECIMAL HEXADECIMAL DESCRIPTION

3831160 Ox3A7578 Raw signature (\x2d\xe9\xf@\x4f\xa3\xbo\x81\x
Method signature for ARMv8 (64bit)

ff 03 05 d1 fc 6b ©f a9 9 63 10 a9 7 5b 11 a9 f5 53 12 a9 f3 7b 13 a9 08

Get the offset

binwalk -R "\xff\x03\x05\xd1\xfc\x6b\x0f\xa9\xf9\x63\x10\xa9\xf7\x5b\x11\xa
DECIMAL HEXADECIMAL DESCRIPTION

5612780 Ox55A4EC Raw signature (\xff\x03\x05\xd1\xfc\x6b\x0f\x

>

Frida script to use the offset:

LCooNOTUVTA, WN R

function hook_ssl verify result(address)
{
Interceptor.attach(address, {
onEnter: function(args) {
console.log("Disabling SSL validation")
}s

onLeave: function(retval)

console.log("Retval:
retval.replace(0xl);

+ retval)

}
1

}

function disablePinning(){
// Change the offset on the line below with the binwalk result
// If you are on 32 bit, add 1 to the offset to indicate it is a THUMB
// Otherwise, you will get 'Error: unable to intercept function at ...
var address = Module.findBaseAddress('libflutter.so').add(@x55adec)
hook_ssl_verify result(address);

setTimeout(disablePinning, 1000)

And launch it using Frida:

1

frida -Uf hook.js -f be.nviso.flutter_app --no-pause

If it still doesn’t work, you’ll have to figure out the correct method to hook yourself. You can try

following the steps for ARMv7 as described on this blog.

About the author

Jeroen Beckers is a mobile security expert working in the NVISO Cyber Resilience team and co-

author of the OWASP Mobile Security Testing Guide (MSTG). He also loves to program, both on

high and low level stuff, and deep diving into the Android internals doesn’t scare him. You can

find Jeroen on LinkedIn.

https://blog.nviso.eu/2020/05/20/intercepting-flutter-traffic-on-android-x64/ 7/8

30.12.21, 11:19 Intercepting Flutter traffic on Android (ARMv8) — NVISO Labs

Like this:

Like

Be the first to like this.

Tagged: android, flutter, @Mobile

Published by Jeroen Beckers

Jeroen Beckers is a mobile security expert working in the NVISO Software and Security assessment team. He
is a SANS instructor and SANS lead author of the SEC575 course. Jeroen is also a co-author of OWASP
Mobile Security Testing Guide (MSTG) and the OWASP Mobile Application Security Verification Standard
(MASVS). He loves to both program and reverse engineer stuff. View all posts by Jeroen Beckers

< Three tips for a better IT Acceptable Use Policy

A checklist to populate your Acceptable Use Policy >

https://blog.nviso.eu/2020/05/20/intercepting-flutter-traffic-on-android-x64/ 8/8

