30.12.21, 11:26 Intercepting Flutter traffic on iOS — NVISO Labs

NVISO Labs

Cyber security research, straight from the lab! s,

® a

Intercepting Flutter traffic on iOS

& Jeroen Beckers W Uncategorized O June 12,2020 = 11 Minutes

My previous blogposts explained how to intercept Flutter traffic on Android ARMvS, with a
detailed follow along guide for ARMv7. This blogpost does the same for iOS.

Testing apps

The beauty of a cross-platform application is of course that I can use my previous Android test
app for iOS so it has the same functionality. You can find an IPA version of the test file on our

github, and you can install the app by copying it over to your jailbroken device and using appinst:

appinst proxyme.ipa

2020-06-12 10:54:57.722 appinst[2454:755332] appinst (App Installer)
2020-06-12 10:54:57.724 appinst[2454:755332] Copyright (C) 2014-2019 Linus Y
2020-06-12 10:54:57.724 appinst[2454:755332] ** PLEASE DO NOT USE APPINST FO
2020-06-12 10:54:57.731 appinst[2454:755332] appinst: main:58 Cleaning up te
2020-06-12 10:54:57.751 appinst[2454:755332] appinst: main:133 Installing be
2020-06-12 10:55:02.500 appinst[2454:755332] appinst: main:183 Successfully

NoupwnNneR

>

The app contains two buttons, one to send an HTTP request and one to send an HTTPS one:

1 void callHTTP(){

2 client = HttpClient();

3 _status = "Calling...";

4 client

5 .getUrl(Uri.parse('http://neverssl.com'))

https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/ 113

30.12.21, 11:26 Intercepting Flutter traffic on iOS — NVISO Labs

6 .then((request) => request.close())
7 .then((response) => setState((){_status = "HTTP: SUCCESS (" + respons
8 .catchError((e) =>
9 setState(() {
10 _status = "HTTP: ERROR";
11 print(e.toString());
12 b
13)5
14
15 | void callHTTPS(){
16 client = HttpClient();
17 _status = "Calling...";
18 client
19 .getUrl(Uri.parse('https://www.nviso.eu')) // produces a request obje
20 .then((request) => request.close()) // sends the request
21 .then((response) => setState((){
22 _status = "HTTPS: SUCCESS (" + resp
23 1)
24 .catchError((e) =>
25 setState(() {
26 _status = "HTTPS: ERROR";
27 print(e.toString());
28 })
29)5
30 | }
»
Let’s get started

On i0S, the story is exactly the same as on Android. The app is proxy unaware and uses its own
certificate store. Setting a proxy in your WIFI settings won’t have any effect, and trusting your
certificate in the system settings won’t validate any HTTPS certificates. The first idea to fix the
proxy issue would be to SSH into your iOS device and use iptables to redirect the traffic, just like
ProxyDroid does on Android. Unfortunately, iptables requires kernel support, and the iOS kernel
does not have any support for it. The next obvious step is to recompile the iOS kernel to

implement this support. So download your copy of the iOS kernel and let’s get started!

All jokes aside, adding kernel support is not an option, so we will have to look elsewhere. The
easiest approach is to create a WIFI hotspot using a second WIFI adapter and use iptables to
redirect all traffic to Burp. However, if you don’t have an extra WIFI adapter, you can also set up

an OpenVPN server and have your device connect to it. Both possibilities are explained below.

Setting up a WIFI hotspot

The steps are rather straightforward, though depending on your OS and network setup it might
require a bit of troubleshooting. I'll run through the steps I took, starting from a clean Kali image,
but if something goes wrong, you’ll have to troubleshoot yourself ;). Note that you can also set one
up through the Kali ‘Advanced Network Configuration’ panel (type: hotspot), but where’s the fun

in that?

Setting up kali

https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/ 2/13

30.12.21, 11:26

Download the latest Kali (2020.1b in my case) and spin up a VM instance. First, we need

Intercepting Flutter traffic on iOS — NVISO Labs

hostapd for a wireless network, and dnsmasq for the DHCP server:

1

I'm using a small WIFI dongle with a Ralink 5370 chipset, so I have two adapters: etho and

wlano.

sudo apt-get update && sudo apt-get install hostapd dnsmasq

Setting up the WIFI network

We need to create a hostapd configuration for our network. Create the mitmwifi.conf file and add

the data as seen below. This will create a WIFI network with SSID MobileTestbed and

Password123 as a password.

OVCoONOTUVTAWNER

sudo nano /etc/hostapd/mitmwifi.conf
Enter the following configuration:
interface=wlan®

driver=nl80211

ssid=MobileTestbed

hw_mode=g

channel=6

macaddr_acl=0
ignore_broadcast_ssid=0

auth_algs=1

wpa=2

wpa_key_mgmt=WPA-PSK
rsn_pairwise=TKIP
wpa_passphrase=Password123

Next, we update the hostapd init script to reference to the mitmwifi.conf file:

1

3

sudo nano /etc/default/hostapd
Update the DAEMON_CONF line:
DAEMON_CONF="/etc/hostapd/mitmwifi.conf"

Set up dnsmasq by modifying /etc/dnsmasq.conf

LCooONOTUVTA WNER

sudo nano /etc/dnsmasq.conf

Add the following configuration to the end of the file:
The interface to listen on

interface=wlan®o

The range to distribute (192.168.10.100-250)
dhcp-range=192.168.10.100,192.168.10.250,255.255.255.0,12h
The gateway (this ip)

dhcp-option=3,192.168.10.1

The DNS server

dhcp-option=6,1.1.1.1

Another DNS server

server=1.1.1.1

Some logging

log-queries

log-dhcp

Listen on the localhost address
listen-address=127.0.0.1

https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/

3/13

30.12.21, 11:26 Intercepting Flutter traffic on iOS — NVISO Labs

Assign the correct IP address to the wlano interface, enable IP forwarding and route the traffic to

etho so that the subnet has internet access.

1 sudo ifconfig wlan® up 192.168.10.1 netmask 255.255.255.0
2 sudo sysctl -w net.ipv4.ip_forward=1
3 sudo iptables -t nat -A POSTROUTING -o eth® -j MASQUERADE

Finally, start dnsmasq and restart hostapd. The WIFI network should show up on your device:

1 sudo systemctl unmask hostapd
2 sudo service hostapd start
3 sudo service dnsmasq start

At this point, you have a working WIFI hotspot with outgoing internet access. Skip to ‘Setting up
the MITM’ in case these steps were successful. Otherwise, you can try the OpenVPN approach

explained below.
Setting up OpenVPN

In case you don’t have access to a WIFI adapter, or there are other reasons why the hotspot
approach doesn’t work, we need a second option. Fortunately, there is a good way to have all the
traffic from an iOS device go over an intermediate node: Through a VPN. This functionality has

already been used by some corporations to spy on iOS users, so if they can do it, we can too!

Installing OpenVPN is pretty straightforward with the help of this setup script. The script detects
our Kali as a Debian OS, but fails to determine the version and will therefore exit. That’s why I
added a step to delete the exit statement in the Debian version check. I used a bit of bash

hacking, but if it doesn’t work anymore, just remove the line manually.

wget https://git.io/vpn -0 openvpn-install.sh

sed -1 "$(($(grep -ni "debian is too old" openvpn-install.sh | cut -d : -f
chmod +x openvpn-install.sh

sudo ./openvpn-install.sh

PWNR

Choose the following options:

1| # Choose the following options:

2 | Public IPv4 address / hostname [xx.xX.xXx.xx]: 192.168.10.1 <<< Change wi
3 | Protocol [1]: 1 (ubp)

4 | Port [1194]: 1194

5 DNS server [1]: 3 (1.1.1.1)

6 | Name [client]: nviso

The script will set everything up and create an OpenVPN configuration located in the /root/

home directory. If you run sudo ifconfig now, you can see thata tun® interface has been

https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/ 4/13

30.12.21, 11:26 Intercepting Flutter traffic on iOS — NVISO Labs
added.

Finally, start the OpenVPN service:
1 sudo service openvpn start

Install the OpenVPN client on your iPhone and start a python HTTP server to host the OpenVPN

configuration:
1 sudo python3 -m http.server 8080 --directory /root/

Navigate to <yourip>:8080 on your iPhone in Safari and download the ovpn file. Open the file
and follow the steps to add it to the OpenVPN app.

No SIM = 22:27 (- No SIM = 22:27 -

192.168.10.1 ¢ 192.168.10.1

q7

Directory listing for /

.bash history
.bashrc

.cache/ '
.dbus/

. .face
face.icon@
. java/

o .local/

. .ssh/

« .wget-hsts

» DVISO.0VPN Openin "OpenVPN"
« openvpn-install.sh

nviso.ovpn
OpenVPN Profile - 5 KB

More...

Import Profile Imported Profile

URL FILE ,
@ Profile successfully imported

1 new Nnan\/PN nrafilac ara availahla far imnnrt Profile Name
https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/ 5/13

Intercepting Flutter traffic on iOS — NVISO Labs

LN ATV Y VTGO U UV AU U T

30.12.21, 11:26

192.168.10.1 [nvisol
192.168.10.1 [nviso]

Standard Profile [Connect after import

ADD DELETE

No SIM = 22:21

Profiles ' Proxy me please

CONNECTED

@ OpenVPN Profile
192.168.10.1 [nviso]

CONNECTION STATS _

Status:
HTTP: SUCCESS (Thu,
28 May 2020 20:21:17
BYTES IN ? BYTES OUT GMT)

1.68 KB/S 1.28 KB/S

DURATION PACKET RECEIVED
00:00:05 0 sec ago
YOU e

https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/ 6/13

30.12.21, 11:26 Intercepting Flutter traffic on iOS — NVISO Labs
Instating the UupenvrnN projie

At this point, you should have internet access on the device and see a VPN icon on the top of your

screeri.

Setting up the MITM

Finally, we need to intercept the traffic when it leaves either the WIFT interface or the OpenVPN
interface and before it goes to the etho interface. We can do this by using iptables. Modify
192.168.10.0 with the actual IP address where your traffic enters the network.

For WIFI: -i wlane

sudo iptables -t nat -A PREROUTING -i wlan@ -p tcp --dport 80 -j REDIRECT --
sudo iptables -t nat -A PREROUTING -i wlan® -p tcp --dport 443 -j REDIRECT -
sudo iptables -t nat -A POSTROUTING -s 192.168.10.0/24 -o eth® -j MASQUERADE
For OpenVPN: -i tune

sudo iptables -t nat -A PREROUTING -i tun@ -p tcp --dport 80 -j REDIRECT --t
sudo iptables -t nat -A PREROUTING -i tun® -p tcp --dport 443 -j REDIRECT --
sudo iptables -t nat -A POSTROUTING -s 192.168.10.0/24 -o eth® -j MASQUERADE

>

coNOUVT A WNER

Next, start up Burp, enable a listener on port 8080 on either 10.8.0.1 or 192.168.10.1 (or

‘all interfaces’) and enable ‘Invisible proxy’ mode:

Binding | Request handling | Certificate - Request handling | Certificate

@ These settings control how Burp binds the proxy listener. @ These settings contrel whether Burp redirects requests received by this listener,

Bind to port: 8080 Redirect to host:

Bind to address: (O Loopback only Redirect to port:

) Allinterfaces [Force use of TLS

® Specific address: {ID.B.D‘I VJ

At this point, the HTTP traffic is intercepted, from both Safari and the Flutter test app.

Disable SSL verification and intercept HTTPS traffic

Now that we have a MITM on the HTTP traffic, it’s time to do the same for HTTPS.
Unfortunately, Flutter doesn’t use any of iOS’s default libraries so the standard approach of
Objection or SSLKillSwitch won’t work. Flutter apps use the BoringSSL library to create TLS
connections, and those are the methods we need to hook or modify in order to modify the
certificate validation logic. Which method we want to change is explained in more detail in a
previous blogpost, so be sure to read that for background information. To be able to intercept

HTTPS we will need to:

 Get the Flutter binary in a decrypted form

e Find the correct method to hook

https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/ 7/13

30.12.21, 11:26 Intercepting Flutter traffic on iOS — NVISO Labs

o Write a Frida script to modify behavior.

Let’s get started!

Acquire the Flutter binary

First, we need the Flutter framework file from the target app. Depending on how the IPA is
installed, you will need to take a different approach, as the IPA may or may not be encrypted. The
test app in this case is installed through appinst with a development certificate and is not

encrypted. We can therefore extract it using ipainstaller:
1| ipainstaller -b be.nviso.flutterApp

Alternatively, if the app was downloaded from the App Store, you should use Clutch. Clutch needs
to be built on MacOS and pushed to the device through SCP. The exact instructions can be found
on the GitHub page. Once it has been installed, you can use it to create a decrypted IPA file:

1 ./Clutch -d <packagename>

After that, you end up with an IPA file that you can copy to your host with SCP and get to the
Flutter binary which is located at
<app>/Payload/Runner.app/Frameworks/Flutter.framework/Flutter :

Copy the ipa to the host

scp root@192.168.2.4:"/private/var/mobile/Documents/flutter_app\ \(be.nviso.
Unzip the ipa file

unzip flutterapp.ipa

Find the Flutter binary

file Payload/Runner.app/Frameworks/Flutter.framework/Flutter

Result: Payload/Runner.app/Frameworks/Flutter.framework/Flutter: Mach-0 un

NoupbwNneR

>

For the test app, you end up with a fat binary, as it still contains 2 architectures. You can extract

the arm64 version with lipo on MacOS:

1 lipo -thin armé4 Flutter -output FlutterThin
2 | file FlutterThin
3 # Result: FlutterThin: Mach-0 64-bit dynamically linked shared library armé64

Find the session_verify_cert_chain method

Now that we have the binary, we can identify and patch the method performing the SSL
verification in order to for the binary to accept our certificate. As explained in-depth in my
previous blogpost, the ‘session_verify_cert_chain method’ is the one we are looking for. There
are two approaches to locate that method in the binary: Search for the magic number of 0x186, or

for the x509.cc string. Since there are less references to the magic number than there are to the

https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/ 8/13

30.12.21, 11:26

x5009.cc string, let’s take the first approach. Select Search > For Scalars and enter 0x186 in the

Intercepting Flutter traffic on iOS — NVISO Labs

Specific Scalar field.

Help

@ Scalar Search [filter: (x186] [CodeBrowsern Fluttern/FlutterThin] — | >

Scalar Search [filter: 0x186] - (FlutterThin) 2 items

BB X

Preview Hex |Decima| (Signed) |Funch'on Mame
0007320 mov w3, £0x186 126 390 FUN_0007c173
00406308 mov w3, £0x186 126 390 FUN_004068c8
Filter: | & = -~
Min: |-2147483647 | Max: 2147483647 |
o CA - W m 1T s wmrrm e "

Searching for the magic number ox186

The correct reference is in FUN_004068C8. The decompiled version of this function is very

similar to the one identified on Android ARM64, and the x509.cc string is also referenced from

here, so we can be pretty sure this is the right function. If you've read the other blog posts, you

know I'm a fan of searching for the correct method using a bunch of bytes rather than take the

offset directly, so that’s what we’ll do.

ETETTE— Sogarwen|
3
|]
_l40,slocal L40,1Varl, * (undefined® *)plVaré[i]):
- FUN_D03b4950 (1ocl_60,0, *pazan_2), ivard (= 0)) {
undefined FUN_ 00406828 ()
xad) & 1} =10} [
XEEF[2
XBEF [3 rari):
00406a24 (R)
KREF[
inedf *) {param 2[1] + Oxi0);
XREF[arll = *{ulonglong *) {1 B
*(ulonglong *) [locs
NREF[ard = FUN_003d£d430 (L
*(alonglong *) (IVarl + Ox1g
if (Vard =) [
1T (*(longleng *) (param 2[1] + OXZE) != 1) {
Local 108 = #{longlong *) {param 2[1] + Dx28);
1
l Lf (*(eode #%) ([Vard + 0nidE) = (code #)0x0} [
e E 4 = FUN_003dbdTe(slocal 14007
00406944 (7 !
00408944 lee |
0D4DGI4E (), = Vard = (**({code *¥) (IVars + 0x14%)) {slozal_140,* {undefineds *] (IVar3 + Ox1S0)}?
200406994 (R, = !
0040E9a0 (R) B *{lenglong *} (pazan_l + 0xbE) - {lenglong) (inT)loc
undefinedi [16] KREF[1]: 0040684c 1 B har *) (parem 2[1] + Oxed) = W0 [
XREF[1]: 0064142+ B d :
ooaneece [TT B
ooa0esce] 2 - = (undefined)* (undefinedd *) (sDAT +)
oo406edn|£a
008068da2E &7 11 a8
0D4068aE |
Boa0Esde| s
oo406genfra o3 A
noaggeed 08 0a Tparam 3 = uVar7;
004062E 48 00 00 3% i
OpddEBee 03 54 40 £2 else |
0040680 03 0B 00 b4 FIH_003addcd)
OD4068L4 €3 OO 40 19 Vars = 13
0406828 <2 07 00 b4)
004068fc £3 03 02 aa gote LAB_DO406aL4:
00406500 £4 03 01 am !
00406904 £5 03 00 am }
DD40690E 28 24 40 a3 i
CD406890c 17 35 40 1% FUN_003adi3c {0x10,0zb, *. ./ .. /third_party/boringsslferc/asl/asl_x808.cc”, Ox1BE)
0DA0EIL0 &3 Ta 40 €3 i Wars = 0y
00406914 29 11 40 £3 § |LAB_BOd08ald:
D040691E 20 24 40 13 ® 58 FUN_00300980 (s10ca1_140)
ODS0S1c 3F 0L 00 f£1 cop %, $0x0 - 1 2 i

The first bytes of this method are ff 03 05 d1 fc 6f of a9 f8 5f 10 a9 f6 57 11 a9
f4 4f 12 a9 fd 7b 13 a9 fd c3 04 91 08 ©0a 80 52 and we can use binwalk to get the

The session_verify_cert_chain method and the method signature

correct offset:

https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/

9/13

30.12.21, 11:26 Intercepting Flutter traffic on iOS — NVISO Labs

1 binwalk -R "\xff\x03\x05\xd1\xfc\x6F\x0f\xa9\xf8\x5Ff\x10\xa9\xf6\x57\x11\xa9
2 DECIMAL HEXADECIMAL DESCRIPTION

£ S
4 | 4221128 0x4068C8 Raw signature (\xff\x03\x05\xd1\xfc\x6f\x0f\xa

>

To make sure this is a repeatable process, I farmed some Flutter apps and ran the signature over

all of them:

1| binwalk -R "\xff\x03\x05\xd1\xfc\x6f\x0f\xa9\xf8\x5Ff\x10\xa9\xf6\x57\x11\xa
2 | Target File: /home/flutter/testapps/anon/Flutterl

3 | DECIMAL HEXADECIMAL DESCRIPTION

/S
51 4221128 0x4068C8 Raw signature (\xff\x03\x05\xd1\xfc\x6f\x0f\x
6 | Target File: /home/flutter/testapps/anon/Flutter2

7 DECIMAL HEXADECIMAL DESCRIPTION

o Z [
9 | Target File: /home/flutter/testapps/anon/Flutter3
10 DECIMAL HEXADECIMAL DESCRIPTION
1 e e
12 | 4247284 Ox40CEF4 Raw signature (\xff\x03\x05\xd1\xfc\x6f\x0f\x
13 | Target File: /home/flutter/testapps/anon/Flutter4
14 DECIMAL HEXADECIMAL DESCRIPTION
o e e e e L B e
16 | 4370908 0x42B1DC Raw signature (\xff\x03\x05\xd1\xfc\x6f\x0f\x
17 | Target File: /home/flutter/testapps/anon/Flutter5
18 DECIMAL HEXADECIMAL DESCRIPTION
10 | m-m e e e e e e - -
20 | 4221128 0x4068C8 Raw signature (\xff\x03\x05\xd1\xfc\x6f\x0f\x

>

Four versions are playing nice, but one version doesn’t have a match. For this version, most likely
an older one, the last four bytes don’t match. In this case, you can shorten the signature and use

trial & error, or open up Ghidra and find the correct offset manually.

Hook it with Frida

With the correct signature, you can now let Frida search for the correct function to hook. The

script is very similar to the one for Android:

1 function hook_ssl verify result(address)

21 A

3 Interceptor.attach(address, {

4 onEnter: function(args) {

5 console.log("Disabling SSL validation")

6 }s

7 onLeave: function(retval)

8 {

9 retval.replace(0x1);
10 }
11 })s
12 |}
13 | function disablePinning()
14 | {
15 var pattern = "ff 03 05 d1 fc 6f Of a9 f8 5f 10 a9 f6 57 11 a9 f4 4f 12
16 Process.enumerateRangesSync('r-x").filter(function (m)

https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/ 10/13

30.12.21, 11:26 Intercepting Flutter traffic on iOS — NVISO Labs

17 {

18 if (m.file) return m.file.path.indexOf('Flutter') > -1;

19 return false;

20 }).forEach(function (r)

21 {

22 Memory.scanSync(r.base, r.size, pattern).forEach(function (match) {
23 console.log('[+] ssl_verify result found at: ' + match.address.toSt
24 hook_ssl verify result(match.address);

25 })s

26 })s

27 | }

28 | setTimeout(disablePinning, 1000)

Alternatively, if you know the offset, the following script can be used:

1 function hook_ssl verify result(address)

2| {

3 Interceptor.attach(address, {

4 onEnter: function(args) {

5 console.log("Disabling SSL validation")
6 }s

7 onLeave: function(retval)

8

9 retval.replace(0x1);
10 }
11 1)
12 }
13 | function disablePinning()
14 1 {
15 var m = Process.findModuleByName("Flutter");
16 hook _ssl verify result(m.base.add(©x4068C8))
17 | }

18 | setTimeout(disablePinning, 1000)

Run it with Frida:
1| frida -Uf be.nviso.flutterApp -1 disable.js --no-pause
2 cen
3 . . More info at https://www.frida.re/docs/home/
4 . Spawned “be.nviso.flutterApp . Resuming main thread!
5 [i0S Device::be.nviso.flutterApp]-> [+] ssl_verify result found at:
6 | Disabling SSL validation

And finally, even the HTTPS traffic is intercepted.

No SIM = 23:08

e Community Edition v2020.2.1 - Temporary Project

w Help Proxy me please

Comparer T Extender T Frojet

Target T Proxy Intrue

s history]' Options]

nary content

INRT=T! l2tatiie |1 anath | MIME tuna
https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/

0x101392

11/13

30.12.21, 11:26 Intercepting Flutter traffic on iOS — NVISO Labs

U | g
i ey [t
. HTTPS Reuest
Status:
HTTPS: SUCCESS (Mon,
08 Jun 2020 21:08:47/
GMT)

{E]

)
Fp—
n Eernm

Final thoughts

Because much of the reverse-engineering work was already done in my Android blogposts, it was
fairly easy to find the correct method in Ghidra. This is one of the rare cases where having a cross-
platform framework is actually beneficial to the reverse-engineering process, which is usually not
the case. Usually, it’s not possible to reuse techniques between platforms; take for example
Xamarin, which is interpreted code on Android but native code on iOS, or hybrid applications

where the webview communicates with a native layer in either Java/Kotlin or ObjectiveC/Swift.

Flutter seems to be gaining traction, so the development of tools and scripts to aid in security
assessments will be very necessary. Hopefully this blogpost was a push in the right direction for

you ‘&

Like this:

Like ﬁ

One blogger likes this.

Tagged: flutter, frida, @ios

Published by Jeroen Beckers

Jeroen Beckers is a mobile security expert working in the NVISO Software and Security assessment team. He

is a SANS instructor and SANS lead author of the SEC575 course. Jeroen is also a co-author of OWASP

https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/ 12/13

30.12.21, 11:26 Intercepting Flutter traffic on iOS — NVISO Labs

Mobile Security Testing Guide (MSTG) and the OWASP Mobile Application Security Verification Standard
(MASVS). He loves to both program and reverse engineer stuff. View all posts by Jeroen Beckers

< Reviewing an ISO 27001 certificate: a checklist

Burp, OAuth2.0 and tons of coding: a testimony of my internship in the penetration testing team at NVISO! >

https://blog.nviso.eu/2020/06/12/intercepting-flutter-traffic-on-ios/ 13/13

